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ELASTIC RESPONSE OF A CYLINDER 
CONTAINING LONGITUDINAL STIFFENERS 

1. INTRODUCTION 

Cylindrical shell theories have been developed over a number of years and there exists a 
large quantity of these theories (reference 1) to model the response of thin shells to free-wave 
propagation and various external loading conditions. Thin shell theories usually involve a 
flexural wave propagating in the shell's axial direction and they sometimes include waves 
propagating in the circumferential direction. Fully-elastic isotropic (thick) shell theory has also 
been developed (reference 2) and this allows for higher-order wave motion in the radial 
direction, which results in significant displacement and stress differences in this direction. 
Transversely-isotropic shell theory has been formulated (reference 3) for shells that have 
different moduli in the axial direction than the radial and circumferential direction. The reaction 
of orthotropic cylinder response has been derived (reference 4) for shells that have different 
moduli in all three of the shell's primary directions. The above references all consider the shell 
material properties to be homogeneous in each specific direction, although for the latter 
documents (references 3 and 4) these properties do not necessarily have to be equal. 

Shells can be reinforced with external or internal stiffeners to add strength and reduce 
weight. Circumferential stiffeners have been added to a thin shell energy model (reference 5) to 
determine the system's stop and pass bands and this was specifically applied to aircraft 
fuselages. Circumferential stiffeners have been added to a thin shell finite element model 
(reference 6) and this resulted in identification of stop and pass bands and the amount of 
coupling between the specific modes. Free vibration of longitudinally-stiffened thin cylindrical 
shells was investigated using Donnell shell equations (reference 7) and the results were 
compared to an analytical solution generated using a Ritz solution method. Axial stiffeners have 
been added to a thin shell energy method (reference 8) to determine the system's pass and stop 
bands using a variety of different stiffener shapes. A study of Timoshenko-Mindlin type shell 
with an internal, lengthwise rib has been undertaken (reference 9) to compute the resonances as a 
function of wave radius and shell angle. An analytical method for longitudinally-stiffened shells 
to predict modal density and radiation efficiency for use with statistical energy analysis has been 
developed recently (reference 10). Note that references 5 to 10 are all some type of thin shell 
theory and the reinforcement is external to the cylinder medium. 

This report derives an analytical model of a fully-elastic cylindrical shell that contains a 
longitudinal stiffener at some location in the shell's interior. The governing equations of the 
shell are the Navier-Cauchy equations of motion in cylindrical coordinates and the governing 
equations of the stiffener are the bar (wave) equation in the longitudinal direction and mass 
multiplied by acceleration in the radial and circumferential directions. The shell is divided into 
two separate cylinders so that the stiffener lies on the exterior surface of the inner cylinder and 
the interior surface of the outer cylinder. This allows the displacements to be written without the 
stiffener forces as functions of the radial, circumferential, and longitudinal directions with 



unknown wave propagation coefficients on both of the mediums. Once these are formulated, 
twelve boundary value equations are written using these displacements or their derivatives. The 
equations that couple the inner and outer cylinder stresses contain the forces of the stiffener. 
These equations are solved using an orthogonalization procedure, and this results in the solution 
of the wave propagation coefficients. These are inserted back into the original displacement 
equations and this produces known displacements and stresses. The model is validated by 
comparing a zero wavenumber (plane strain) excitation to a solution obtained using finite 
element analysis. An example problem is formulated and analyzed. The addition of multiple 
stiffeners into the model is also discussed. 

2. SYSTEM MODEL 

The system model is that of a cylinder containing a longitudinal stiffener, as shown in 
figure 1. This problem is analytically modeled by assuming that the cylinder is governed by 
fully-elastic equations of motion and the stiffener is modeled using the bar wave equation for its 
axial (extensional) motion and line mass equations for its non-axial motion. The model uses the 
following assumptions: (1) the cylinder has infinite spatial extent in the axial direction; (2) the 
displacements in the cylinder are linear and three-dimensional; (3) the longitudinal stiffener is 
continuous and it exerts forces in the radial, circumferential, and axial directions on the cylinder, 
and; (4) the stiffener's cross-sectional area is sufficiently small that it can be modeled as a point 
force in the radial and circumferential directions. 

Figure 1. Schematic of a Modeled System 



The cylinder's motion is governed by the Navier-Cauchy equations of motion written in 
vector form as 

//Vnu(r,0,z,/)+a + //)W.u(r,0,z,/)=/> d
2u(r,0,z,t) 

rr 
(1) 

where p is density, A and // are Lame constants, r is the radial direction, 9\% the circumferential 
direction, z is the axial direction, / is time, and u is the cylindrical coordinate displacement 
vector. Using previously-developed techniques (references 11 and 12), and separating the 
domain into two regions based on the radial location of the stiffener b, the radial displacement 
can be written as 

ut(r,6,z,t)= ^f/i,')(r)exp(i/w6')exp(iAz)exp(-i^) . (2) 

where a < r < b is denoted region (J =) 1 and the radial dependency of equation (2) is written as 
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and where b< r <c is denoted region 2 and the radial dependency of equation (2) is written as 
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The circumferential (tangential) displacement can be written as 

ffl-TVfc 

vt(r,0,z,t) = ^Vl
{„i)(r)cxp{imO)Qxp(\kz)exp(-\cot) (5) 

where a < r <b the radial dependency of equation (5) is written as 
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and where b< r <c the radial dependency of equation (5) is written as 
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The axial (longitudinal) displacement can be written as 

w, (r, 0, z,i)- V W„ ' exp(iw 6) exp(i&z) exp(-i cot) , 

(6) 

(7) 

(8) 

where a < r <b the radial dependency of equation (8) is written as 

7(l-i)w^ 
W^(r) = Am{Sk)}m(ar) + Bm(\k)Ym(ar) + E„ 

\     r     J 
KAPr)-PK(Pr) 

+ F„ 
(l-i)w 

r      J 
YmAPr)-PYm(Pr) 

and where b< r <c the radial dependency of equation (8) is written as 
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In the above equations, a is the inner radius of the cylinder, b is the radial location of the 
stiffener, c is the outer radius of the cylinder, a is the modified wavenumber associated with the 
dilatational wave, /?is the modified wavenumber associated with the shear wave, k is the axial 
wavenumber, co is the frequency, Jm is an wth order standard Bessel function of the first kind, 
Ym is an wth order standard Bessel function of the second kind, and Am, Bm, Cm, Dm, Em, 

Fm, Gm, Hm, Km, Lm, M„ and jVm are unknown wave propagation coefficients whose 
solutions are determined below. The modified dilatational wavenumber is calculated using 



«=J^-*2 (11) 

where 

c„=]^. (.2, 

and the modified shear wavenumber is calculated using 

P-&-* 

w here 

t%=J-   • (14) 
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Note that imaginary arguments in the Bessel functions are permissible. For the remainder of this 
report, the exponentials, with respect to time, are suppressed in all of the equations. 

The solution to the wave propagation coefficients are found using 12 boundary value 
equations that are written using the stress-strain and displacement relations at the locations of the 
shell's inner radius (r = a), location of the stiffener (r = b), and the outer radius of the shell (r = 
c). At the inner radius of the shell (r = a), the cylinder is modeled as a free surface and the 
normal stress in the radial direction is 

r,.,.(a,6',z) = (/l + 2/v) + —w,(a,6»,z) + —  
or a a        00 

+ <iaW,(a,g.z) = 

dz 

and the shear stresses associated with the radial direction are 
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At the radial location of the stiffener (r = b), three stress balances are written that equate the 
forces in the embedded stiffener to the stresses in each region of the cylinder. The normal stress 
in the radial direction is 

^du,(b,0,z)    A Adv,{b,0,z)    ,dw,(b,0,z) 
(A + 2/i) + —u,(b,0,z) + + A  

^ dr b b       60 dz 
di42(b,0,z)    A Adv2(b,0,z) 

= (A + 2/i) +— u2(b,0,z)+- —  
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+Adw2{b^z) - fr(b,0,z)8(0-0o), (18) 
dz 

and the shear stresses associated with the radial direction are 
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where fr(b,0,z), f(,(b,0,z), and f.(b,0,z) are the radial, circumferential, and longitudinal 

stresses, respectively, that the embedded stiffener exerts on the shell, 8 is the Dirac delta function 
and 0n is the angular offset of the stiffener with respect to 0 = 0. At the stiffener's radial 
location, three equations are written that equate the displacement continuity from the first region 
to the second region. These equations are 

u1(b,0,z) = u2(b,0,z) , (21) 

V](b,0,z) = v2(b,0,z) , (22) 

and 

W[(b,0,z) = w2(b,0,z) . (23) 

At the outer radius of the shell (r = c), the cylinder is modeled as a free surface with an applied 
radial stress. The normal stress in the radial direction is 
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and the shear stresses associated with the radial direction are 

i   a   x       dv2(c,0,z)    fu udu2(c,0,z) 
Trff(c,e,z) = /j v2(c,0,z) + — = 0 (25) 
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where p(0,z) is the applied radial stress at the location r = c. 

For the embedded stiffener, the internal forces in the radial and circumferential directions 
are modeled as line masses multiplied by the acceleration in these directions. This is written as 

jr(b,0,z) = ^^''Y,Ui:}(b)exp(im0)exp(ikz) , (27) 
2-TO    m= . 

Mb,0,z)= ' YdVH)(h)e\p(im0)exp{ikz) , (28) 

where Ms is the mass-per-unit length of the stiffener. Note that if the stiffener has significant 
bending stiffness, the mass terms in equations (27) and (28) can be replaced by a dynamic beam 
model such as the Bernoulli-Euler beam equation or the Timoshenko beam equation. The 
internal forces in the axial direction are modeled using the bar wave equation, and this equation 
is written as 

fz(b,0,z) = {~AA*>2+4£*2) Y^WexpCiw^expCife) , (29) 
2rcb m=_x 

where A, is the cross-sectional area of the stiffener, ps is the density of the stiffener, and E, is 
Young's modulus of the stiffener. For the numerical examples presented here, the external force 
on the outside of the shell is modeled as a ring pressure with axial wavenumber A', and is given 
by 

p(0,z) = P{)exp(ikz) . (30) 



Using the above four equations, and the functional form of the displacement fields, equations 
(15) to (26) become 

(i^)ffl+io?w+w^ 
dr 

V£\a)+VdW•{d) 
a 
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and 

HI—TW lit—-r AJ 
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(38) 
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The presence of the Dirac delta functions in equations (34) to (36) complicates the form 
of these equations. Converting the delta function to its equivalent Fourier series and rewriting 
the stiffener force terms will allow the equations to decouple using an orthogonalization 
procedure. First, the delta function is rewritten using its Fourier expansion on 6 e [0,2;r] as 

8(0_0O) = — £exp[in(0-0o)]=— Yexp(-i/i0o)exp(iw0) (43) 

Next, the identities 
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In 

n=+x   m=+x 

n--?.   m=-x 

exp[i(/7- w)#0]exp(im#) (44) 

are used to convert the double-multiplicative summations into double-embedded summations. 
The proof of equation (44) is shown in appendix A. These equations are substituted into the 
right-hand terms of equations (34) to (36), and equations (31) to (42) are multiplied by the 
exponential exp(-ip#) and the resulting expressions are integrated over [0,2;r]. Because the 
exponential functions exp(-ipO) and exp(i/w#) are orthogonal on this interval when m* p , 
equations (31) to (42) decouple into an infinite number of individually p-indexed equations given 
by 

(A+ 2//) 
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a a 
(45) 

/|«2fi2_£F«(a) 
dr a a 

(46) 

dr 
(47) 

iA + 2rt*Ep&+±U«Hb)+^V?\b) + \kAW<;l\b) 
dr b b 

^A + 2M)^p^~U^(b)-^V^(b)-UUW^(b) 
dr b b 

- ^r X exP«" - PWO Wil)(b), 
2.7th   ___ 

(48) 



and 

^m_Mva)(b)+mu^ib) 
dr        b   * b 

ar b b 

'^plKn-pWoW^ib), (49) 
2nb 

W(S)t/,^.^.(i).,.<'w 
dr dr 

- - A 

~2tf/T 
(AsPsu-    A,Esk

2)Yexp[K„ _ p)0oW^(b) , (50) 

U{
l
u(b)~Ut

p
2)(b) = 0 , (51) 

Vll)(b)-V?\b) = 0 , (52) 

^l,(i)-^2,(6) = 0 , (53) 

dr c c 

^.£^,^,0=0, ,55) 
dr c c 
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dr 

Note that 8,,,, in equation (54) is the Kronecker delta function. 

The left-hand side of equations (45) to (56) are /^-indexed and these terms correspond to 
the dynamics of the shell. The right-hand side the equations (48) to (50) are /7-summed and these 
terms correspond to the stiffener acting on the shell. The functional forms of the displacements 
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listed in equations (3), (4), (6), (7), (9) and (10) are now inserted into equations (45) to (56), and 
this results in an the algebraic matrix equation for each individual p-index written as 

ft— -T'*J 

[A(p)]{xp} = 60p{p}+ £[F(«,p)]{x„} , (57) 

where [A(p)] is the 12 x 12 matrix that models the dynamic response of the shell, {x„} is the 

12 x 1 vector of unknown wave propagation coefficients, [F(n,p)] is the 12 x 12 matrix that 

models the interaction of the forces in the shell and the forces in the stiffener, and {p} is the 12 x 
1 vector that models the applied external load. The entries of the matrices and vectors in 
equation (57) are listed in appendix B. Equation (57) is now written for all values of the p-index, 
and this results in 

A x = F x + p , (58) 

where A is a block diagonal matrix equal to 

A = 

A(-l)      0 0 

0        A(0)      0 

0 0       A(l) 

(59) 

with 0 a 12 x 12 matrix whose entries are all zero, F is a rank-deficient, block-partitioned matrix 
equal to 

F(-l-l) F(0,-1) F(l,-1) 

F(-1,0) F(0,0) F(1,0) 

F(-l,l)      F(0,1)      F(l,l) 

(60) 

p is the system excitation vector that models a normal ring load and is equal to 

p=[-  oT   {P}T   oT   H\ (61) 

with 0 as a 12 x 1 vector whose entries are all zero, and x is the vector of unknown wave 
propagation coefficients and is equal to 

x = [-   {x,}T    {x„}T    {x,}T    -]T, (62) 

12 



where 

x„={An    Bn    C„    D„    En    F„    Gn    Hn    K„    L„    Mn    N'„}T . (63) 

Note that from equation (58), the addition of the stiffener force terms couples all of the 
displacement modes together and they do not respond independently, even though the equations 
themselves are decoupled. The solution to the wave propagation coefficients in equation (62) is 
now found by truncating the matrices and vectors in equation (58) to a finite number of terms 
and solving 

x = [A-F] 'p . (64) 

Once the wave propagation coefficients are known, the displacement in all three directions and 
the stress distribution in the cylinder can be calculated. 

3. MODEL VALIDATION 

The model that was developed in section 2 can be validated for zero wavenumber 
response (plane strain) by comparing the analytical results to model results calculated using a 
finite element program. This comparison used a shell where the inner radius is 0.0825 m, the 
outer radius is 0.0953 m. Young's modulus is 1.55 x 107 N m ", Poisson' ratio is 0.45, density is 
1250 kg m   , mass-per-unit length of the stiffener is 0.75 kg m ', the angular offset of the 
stiffener is n/6 radians, radial location of the stiffener is 0.0889 m, and the frequency of 
excitation is 100 Hz. For the zero wavenumber case, the displacements in the axial direction are 
all zero and the stiffener's axial properties do not enter into the calculations. The finite element 
model was run using Abaqus version 6.10 finite element program. The model had 6000 plane 
strain elements, one mass element, 6600 nodes, and was analyzed using the two-dimensional 
standard steady state dynamics solver. 

Figure 2 shows a plot of the transfer function of displacement divided by pressure versus 
angle at the radial location of 0.0889 m. The solid line is the radial displacement of the 
analytical model (equation (2)), the dashed line is the circumferential displacement of the 
analytical model (equation (5)), the solid markers are the radial displacement of the finite 
element model, and the circular markers are the circumferential displacement of the finite 
element model. The analytical model was calculated using 27 terms (-13 < m < 13), which 
produced a 324 x 324 system matrix. For this validation problem, there is broad based 
agreement between the analytical model and the finite element model displacements at all 
locations on the cylinder. 

13 
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Figure 2.  Transfer Function of Radial Displacement Divided by Pressure vs Angle (top) and 
Circumferential Displacement Divided by Pressure vs Angle (bottom) 

Note: In figure 2, the solid line is the analytical model, the square 
markers are the finite element results, and the dashed line is the 
response of the cylinder without the stiffener. 
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4. THREE-DIMENSIONAL ELASTIC EXAMPLE 

A three-dimensional example problem is now formulated and discussed. The same 
parameters used for the shell in the model validation (section 3) are used to construct this 
numerical example. The embedded stiffener used in this model is Kevlar grade 29 that has a 
density of 1440 kg m", a Young's modulus of 83 x 109 N m 2, and a mass-per-unit length of 
0.00285 kg m '. The stiffener has a diameter of 0.00159 m and is in the same physical location 
as the stiffener in the model in section 3. Figure 3 shows a plot of the magnitude of the transfer 
functions of displacement divided by pressure versus wavenumber at the location r = 0.0889 m, 
0= 71/6 radians, and z = 0 m. The plot's scale is in decibels and the units are m Pa"1. The top 
plot is the radial displacement, the middle plot is the circumferential displacement, and the 
bottom plot is the longitudinal displacement. The solid lines are the model results with the 
stiffener and the dashed lines are the model results without the stiffener. The circumferential 
displacement for the system without the stiffener is zero and thus is not depicted on the middle 
plot. The analytical model with the stiffeners was calculated using 27 terms and the analytical 
model without the stiffeners was calculated using a single (n = 0) term, as the ring load produces 
an angularly-symmetric response for the problem without the stiffener and higher order terms do 
not enter into the analysis. Note in the figures that the resonance for the ring mode has decreased 
in wavenumber due to the effects of the stiffener. Additionally, the next two modes of the 
stiffened structure are visible as the response is no longer angularly symmetric. 

Figure 4 is a plot of the radial displacement divided by pressure of the stiffened system 
versus wavenumber and frequency. Figure 5 is a plot of the circumferential displacement 
divided by pressure versus wavenumber and frequency. Figure 6 is a plot of longitudinal 
pressure divided by pressure versus wavenumber and frequency. In figures 4 to 6, the location 
on the cylinder is r = 0.0889 m, 0= nib radians, and z = 0 m; the scale of the plot is in decibels; 
and the units are m Pa '. For this system, the response is predominantly a combination of the n = 
0 and n = 1 cylinder modes. This was deduced by comparing the n = 0 and n = 1 modes of the 
unstiffened system to these figures. The wave speeds of the individual waves, however, have 
increased with the addition of the stiffener. Note that there is some slight numerical instabilities 
at extremely low frequencies and high wavenumbers. This is a location (in wavenumber and 
frequency) that is not typically analyzed because there is no free-wave response in this area. 

Three other model attributes are briefly discussed. First, in the event that the cylinder 
contains Q stiffeners at the radial location r = b and angular location 9q, the right-hand side of 

equations (48) to (50) are rewritten as 

q=\ 

./I 

^]^xp[i(«-p)W>) 

^Xexp[i(«-p)^]F„("(6) 

(65) 

2/rf> 
(66) 
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and 

<H|_ 

^E&Y*•&{n-p)eqW?\b) 
2/d) 

(67) 

where the subscript q corresponds to the qth stiffener. These equations allow additional 
stiffeners at r = b to be incorporated into the model. Second, if the stiffeners are at a radial 
location r * b , then the solution of the cylinder in the radial direction has to be further 
subdivided at the radial location of each stiffener and six new equations have to be added to the 
stress and continuity equations for each stiffener when r * a or r * c. These are a radial, 
circumferential, and longitudinal stress equation and a radial, circumferential, and longitudinal 
displacement equation. If the stiffener is at the cylinder boundary, i.e. r = a or r = c, then only 
the stress equations are needed to incorporate the effects into the model. Third, if the external 
load is some function other than a constant ring load, then this function has to be replaced by its 
Fourier series, then expanded and orthogonalized in a similar manner as to the displacement 
fields. This process is well known. 
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Figure 3.  Transfer Function of Displacement Divided by Pressure vs Wavenumber 

Note: In figure 3, the top plot is the radial displacement, the 
middle plot is the circumferential displacement, and the bottom 
plot is the longitudinal displacement. The solid lines are the model 
results with the stiffener and the dashed lines are the model results 
without the stiffener. 
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Figure 4. Radial Displacement Divided by Pressure vs Wavenumber and Frequency 
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Figure 5. Circumferential Displacement Divided by Pressure vs Wavenumber and Frequency 

18 



400 

y 

.   ^f- \ VM-i-,'-^r 

10 20 30 
Wavenumber (rad/m) 

£S2 
40 

i-50 

55 

-60 

65 

1-70 

-75 

•-80 

•85 

•90 

Figure 6. Longitudinal Displacement Divided by Pressure vs Wavenumber and Frequency 

5. SUMMARY 

An elastic analytical model of a system that consists of a cylinder containing an embedded 
longitudinal stiffener has been derived. This model was developed so that the thick shells that 
contain one or more stiffeners can be accurately modeled and analyzed. This new model was 
verified for the case of plane strain behavior by comparison of the results to finite element 
analysis results. An example problem was developed and the behavior of the system at various 
frequencies and wavenumbers was illustrated. The inclusion of multiple stiffeners was 
discussed. 
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APPENDIX A 
DOUBLE SUMMATION IDENTITIES 

The proof of the double summation identity given in equation (44) is presented in this 
appendix. The identity is critical in transforming the problem into a form where orthogonal 
functions can decouple the modes. The first term in equation (44) without the 2/r coefficient is 

m - tx 

£Xmexp(im6>) 
_OT=-X 

^ exp(-irt#„)exp(iA7<9) (A-l) 

(i), where X,„ is either U„\b), V„{b) or W^{b). This can be written as 

A7 = +00 

J^Xme\p{im0) 
«=-oo _/M = -0O 

exp(-i/7#Q) exp(w#) (A-2) 

Expanding the m indexed series results in 

£[••• + * ,exp[i(-l)6'] + A'l)exp[i(0)^] + A'lexp[i(l)^]+-]exp(-m^,)exp(i/7^) .   (A-3) 

Next, expanding the n indexed series yields 

••• + [••• + X lexp[i(-l)^] + X0exp[i(0)^] + Xlexp[i(l)6']+-]exp[-i(-l)^0]exp[i(-l)^] 

+ [••• + X ,exp[i(-l)^]+A'oexp[i(0)^] + A'lexp[i(l)6>]+-]exp[-i(0)^)]exp[i(0)^] 

+ [••• + X ,exp[i(-l)^] + A'oexp[i(0)^] + A'lexp[i(l)^]+-]exp[-i(l)ft]exp[i(l)^] + 

and multiplying through gives 

••• + [- + X , exp[-i(-1 )0n]exp[i(-2)#] + X0 exp[-i(-1 )dn]exp[i(-1 )0] 

+ A",exp[-i(-l)0n]exp[i(O)0]+-] 

+ [••• + X , exp[-i(0)6>0]exp[i(-1 )0] + X0 exp[-i(O)0„ ]exp[i(O)0] 

+ Xt exp[-i(0)<90]exp[i(l)^] +•••] 

+ [••• + X , exp[-i(l)^]exp[i(0)^] + Xoexp[-i(l)^]exp[i(l)^] 

+ X,exp[-i(l)0„]exp[i(2)0]+-]+--   . 

(A-4) 

(A-5) 

A-l 



Regrouping equation (A-5) on specific values of X„ yields the equation 

m=+ao m=+ao 

•••+ ]Tx , exp[-i(m-(-l))0o]exp[im#] + V Jf0 exp[-i(m-0)#o]exp[iw#] 
m=-oo m=-oo 

+ ^^i exp[-i(/w-l)#0]exp[iw<9] + ...   , (A-6) 
m=-oo 

which can be rewritten as 

n-+x      m=+oo 

J]     2] A"„exp[i(rt-w)6>0]exp(i/w<9) . (A-7) 
n=-x      m=-ac 

A-2 



APPENDIX B 
MATRIX AND VECTOR ENTRIES 

The entries of the matrices and vectors in equation (57) are listed below. The nonzero 
entries of [A(p)] are 

flu =       -)pi](aa) + 
a 

2MP-V -a2(A + 2{j)-M2 

a 
iP(aa) , (B-l) 

aU2 = Yp.,(aa) + 
a 

2MP-1) 
a 

-a2(A + 2p)-Ak2 Y„(aa) , (B-2) 

«u =     Jp.l(/to) + -, Sp(pa), 
a a 

(B-3) 

-]\Mpp             , , 2i/(p(p-l)v «i.4 = — Yptl(pa) + ^ yr(pa) , 
a a 

(B-4) 

au =    2'M(/? + 1)J/,.,(/ga) + 2i^J/,(^) , 
a 

(B-5) 

2iM(p + l)Y/i|(Af) + 2i^Y/)(aq) ( 

LI 
(B-6) 

-2\uap 2\jup(p-\) 

« a" 
(B-7) 

-2\fjccp„     .     .    2i/#>(/;-l)v, 
(B-8) 

fl2.3 =^£j/,+,(/fo)+ 
fl 

-2MP-1) 
a 

+ rf2 J „(/*>) , (B-9) 

B-l 



a2A=-^-Yp.dfia) + 
a 

-2MP(j>-l)+Mp Y»Ofib) , (B-10) 

^2,5  = 
- pkp{\ + '\)-2\/jk 

}n[(Po) + ^/3kiP{Pa) , (B-ll) 

«2.6 
- //fcp(l + i) - 2\/jk 

a 
Y,+l(/Sb) + v//SfeY„(/fo) , (B-12) 

v    2\ukp .   , 
03,1 = -2i£//«J/,,l(oa) + J„(a») , 

a 
(B-13) 

03.2 =-2iA:/iQrY/,r|(«a) + !,,(««) , 
a 

(B-14) 

a33=-i^J,(/k), (B-15) 

(B-16) 

«3.5 = 
fi{i-l)p(p + 2) ">        i *> i 

+ //(/?--*-) Jptl(yftl)-^J,(^l)  , 
</ 

(B-17) 

«3.6 = 
Mi-Dp(p + 2) 

+ M(J32-k2) Y^(0a)-y&-YK(fla) , (B-18) 

2//a i    /  u a4.i =—— Jp.|(ao) + 2MP-D 
62 

a2 (A+ 2//)-A/;2 
J^(a^) , (B-19) 

2/ya 
a4.2 =-7— Yptl(ob) + 

b 
Yp(ab) , (B-20) 

B-2 



- 2WPP ,      tau^ ,  2\fjp(p-\)      iau^ 
«4,3 = Sp+[{pb) + i,,(pb) , (B-21) 

b b~ 

04,s =    2l*ik{
L
P + l)Jp](Pb) + 2iMf]kSp(f]b) , (B-23) 

fl4.ft =    2^P + l)Ypit(/1b) + 2iM{JkYr(/Jb) , (B-24) 

#4.7 = -04,i > (B-25) 

tf4.K =-fl4j . (B-26) 

04,9 = -^4,3 i (B-27) 

a4M] = -a4,4 , (B-28) 

04.11 =-04,5   . (B-29) 

04.12 =-04,6  , (B-30) 

„,, m=Sex.,^m+^aUdlhm (B.31) 
b b~ 

„,, =^£y^(a6)+^paYf((rf)) , (B.32) 

B-3 



tf5.3=-T^J„.,W + 
-2/f(p-l) 

+ ^2 h<M > (B-33) 

CSA=-^-Y „.>(&) + 
-2MP-D 

A2 + /i/?: 
yP(fib). (B-34) 

«5.5  = 
-//£/>(!+ i)-2i//£ 

Jp+l(fib)+ipflkJp(j3b) , (B-35) 

05.6 
-//fy?(l + i)-2i//fc 

Ypl(/Jb) + iM/3kYp(/3b) , (B-36) 

05.7 = -<35.l   . 

«5.8 = -fls,2 

a5.9 = -a5,3 , 

#5.10  - —^5.4   i 

<ar5.ll =-05,3  > 

05.12   = -«5.6   , 

(B-37) 

(B-38) 

(B-39) 

(B-40) 

(B-41) 

(B-42) 

,  ..     1\ukp ,   ,  ,. 
a6,, =-2i^orJ;,,i(Qr6)+    ^ *J,,(<?/?) , 

0 
(B-43) 

a6i2 = -2\k{jaY/:i,(a*) + -^-^Yp(ab) , 
0 

(B-44) 

B-4 



"6.3  =-^J „(/»), 
b 

(B-45) 

flM=-7^Yp(^&) , 
b 

(B-46) 

«6.5  = 
Ki-i)p(P+2)+/Kfil _k2) )p^pb)-x-^ip{pb), (B-47) 

a<sf, = 
//(i-I)/?(p + 2) "> f   "> • 

b* 
+ JU(fi'-k<) Y,„ ,(/?/>)--^Y„(/%) , (B-48) 

06.7  — — 6f6.l   , 

06.X  = -^,,.2 

06.9   - ~06.3   i 

06.10   — —06.4   5 

#6.1 I   — —06.5   , 

fl6.12   — — 06.6   j 

(B-49) 

(B-50) 

(B-51) 

(B-52) 

(B-53) 

(B-54) 

a7.i = -aJ,,,i(a/>) + -7-ip(ab) , (B-55) 

a7.2=-aY/>.,(aA) + fY/,(aA) , 
b 

(B-56) 

B-5 



fl7j=£j,(^), 
b 

(B-57) 

a7,4=^YP08&)s (B-58) 

a7,5 = i£J,,,,(/%) , 

a7,6=i*Y„+I(/S&) , 

a7,7 = -a7.i , 

a7.K = -07.2 , 

a7>9 = -a73 , 

<37.io — ~QIA •> 

(B-59) 

(B-60) 

(B-61) 

(B-62) 

(B-63) 

(B-64) 

a7,ii =-07,5 , (B-65) 

al.\2  — ~#7.6   , (B-66) 

flsj =— iP(ab) , 
0 

(B-67) 

b 
(B-68) 

a,.i=piPAPb)-^-)p{/3b) , (B-69) 

B-6 



b 
(B-70) 

fls.s =ik]p+i(fib) , 

ch.,=xkYpAPb) , 

(B-71) 

(B-72) 

tfx.? = -as,, , 

OK.K  — "Ox. 2 

Ox.9   — — aX.l   -i 

«K, io - — OM   > 

OK,11 — —OK,5   , 

OK.I2  = -OK.6 

(B-73) 

(B-74) 

(B-75) 

(B-76) 

(B-77) 

(B-78) 

a9ii = ikir(ab) , (B-79) 

a9l2 = i£Y,,(a/>) , (B-80) 

fl,.s=^-^J^.,(y»)-^J,(^) , (B-81) 

a9.6=Q—^-Y^(Pb)-0Yp{fib) , (B-82) 

B-7 



#9.7   — —#9.1    , 

#9,8   — — #9.2    > 

#9.11   — —#9.5   i 

#9.12  — —#9.6   i 

(B-83) 

(B-84) 

(B-85) 

(B-86) 

2Ma ,      /      N 
#10.7 = Jp*l(ac) + 

c 
W£d±-aHA+2v)-M2 

K(ac) , (B-87) 

2jua „    .    . 
#10.8 = Yp+1(arc) + 

c 
2MP-1) a2 (A + 2fi) -kk' YAac) , (B-88) 

^-zaaftj^ofcj+aEfcaj^), (B-89) 

C C" 
(B-90) 

#,o,, =    2l^ + ^,(/fc) + 2i///2U,,(/fc) , (B-91) 

#io,2 =    2l*jk{p + ])Y„.i(/k) + 2iMj3kYp(/k) , (B-92) 

-2\/uap,     .    .    2\/jp{p-\)l 
#...7 = ^^Jp.i(«c)+    ^ ; J^(orc) , 

c c* 
(B-93) 

aiu=z^Y;,,l(a,)+2Mpi>Y,,(ac), (B-94) 

B-8 



a„.9 =——J„+l(/fc) + 
-2fjp{p-\) 

+ rf2 JP(/fc) , (B-95) 

amo=-^Yp+l(fic)+ •2fsp(p-D + /i/?: Yr(j3c) , (B-96) 

</ 11.11 
//fy?(l + i)-2i//& 

Jp.,(/fc) + i^Jp(/fc) , (B-97) 

fln.i: 
yufep(l + i)-2i/xfc 

YPAPc) + \/jpkVp(Pc) (B-98) 

a,27 =-2i^/aJp+i(fl!c)+ —J,,(ac) , 
c 

(B-99) 

flf,2%8 = -2ify/aY/Ml(ac) + ^Y,,(ac) , 
c 

(B-100) 

a^=-t*P-ip(Pc) , (B-101) 

an,w=-^-Yp(/k) , 
c 

(B-102) 

a 12.11 

Mi-Dp(p + 2) 
+ V(P2-k2) ]p^fk)-^)p{(k) , 

c 
(B-103) 

and 

a 12,12 

Mi-DM/7+ 2) 
+//(/?-n 

c 
(B-104) 

The nonzero entries of [F(«, /?)] are 

B-9 



Ai = 'exp[i(w-/>)£„] 
2/rf? 

or Jn+i(a6) + -J„(a6) (B-105) 

<y Af,      ... „ , 
/4.2 =———exp[i(n-p)80] 

L7W 
•aY„+l(ab) + -Y„(ab) 

b 
(B-106) 

A3 =——Lexp[i(n-p)0o] 
l7W 

^K(Pb) 
b 

(B-107) 

A.4 =   - ,'exp[i(/?-p)flo] 
2;ZD 

1 n 
Y„ (/?/>) (B-108) 

A.s = ^Lexp[i(«-p)0()][i* J„.,(/ft)] , 
2;ro 

(B-109) 

A.6 = ^^-exp[i(/i-p)0„][i* Yn^Pb)] , (B-110) 

Ai =   ,  ," exp[i(w-p)fl„] 
2;zn 

1// 
J„(o*) (B-lll) 

A2 =  - .   exp[i(w-/0flo] 
2;ZP 

— Y,,(«/)) 
b 

(B-112) 

A3 =   __,•'exp[i(w-/?)gn] 
2.OT 

Pi^(Pb)--lAPb) 
b 

(B-113) 

a>2A/ A4 =——^exp[i(«-pH] 
2OT 

PYnAPb)--Yn(Pb) 
b 

(B-114) 

B-10 



2 i.i 

^=^rT£-exp[i(n-/>)6>o][i*J,,+10S&)], 
l/tb 

(B-115) 

CD
2
MS fsjs =—-r-exp[\(n-p)0o][ik Y„Affl] 

litb 
(B-116) 

./;,, = 
A,p,af - AsEsk' 

2nb 
exp[\(n-p)0n][ik Sn(ab)] , (B-117) 

/M = 
Aspsco2 -AsEsk

2 

2JA 
exp[i(/!-p)0o][i*Y„(aA)], (B-118) 

As - 
Aspsco~ - AsEsk' 

2nb 
exp[i(n - p)0o] 

(l-i)/7 
}„APb)-pi„(Pb) (B-119) 

and 

76.6  — 
Axp,co- -AsEsk' 

2nb 
exp[i(n - p)0Q] (l-i)« Y,M (/?/>)-/?¥„(/?/>) (B-120) 

The nonzero entry of p is 

P\ 0.1   — M)   • (B-121) 

B-ll (B-12 blank) 



APPENDIX C 
LIST OF SYMBOLS 

A Dynamic shell matrix 
A(p) Dynamic shell sub-matrix 

A„ Wave propagation coefficient 
A, Cross sectional area of stiffener 
a Inner radius of cylinder 
a Modified wavenumber associated with the dilatational wave of the cylinder 
Bm Wave propagation coefficient 
b Radial location of stiffener 
P Modified wavenumber associated with the shear wave of the cylinder 

Cm Wave propagation coefficient 
c Outer radius of cylinder 
cd Dilatational wave speed of cylinder 
cs Shear wave speed of cylinder 

Dm Wave propagation coefficient 

Em Wave propagation coefficient 

£\ Young's modulus of the stiffener 

F Stiffener force matrix 
F(n, p) Stiffener force sub-matrix 

F„, Wave propagation coefficient 
fr(b,0,z) Radial stress of the stiffener 

f(,(b,0,z)       Circumferential stress of the stiffener 

/. (b,8,z) Longitudinal stress of the stiffener 

Gm Wave propagation coefficient 
Hm Wave propagation coefficient 
Km Wave propagation coefficient 
k Longitudinal wavenumber 
Lm Wave propagation coefficient 
A First Lame constant of cylinder 
Mm Wave propagation coefficient 
Ms Mass per unit length of the stiffener 
m Cylindrical mode number 
/u Second Lame constant of cylinder 

Nm Wave propagation coefficient 
p Load sub-vector 

p Load vector 

P0 Magnitude of applied pressure 
p Equation index 

C-l 



p(0, z) Applied pressure at the exterior of the cylinder 
r Radial location on the cylinder 
p Cylinder density 

ps Stiffener density 
/ Time 
0 Angular location on the cylinder 
0O Angular position of stiffener 
rrr(a,0,z) Normal stress in radial direction 

rr0{a,0,z) Shear stress in radial-circumferential direction 

rn (a, 0, z) Shear stress in radial-longitudinal direction 

uf(r,d,z,() Radial displacement of they'th layer 

v,(/\0,z,/) Circumferential displacement of the/'th layer 

W/(r,0,z,t) Longitudinal displacement of the /th layer 

co Frequency 
x Coefficient vector 
xp Coefficient sub-vector 

z Longitudinal location on the cylinder 

C-2 
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